

SUBJECT: PreCalculus

GRADE LEVEL: 11 TEACHER: Ms. Yvonne lee

SCHOOL YEAR: 2022-23 EMAIL: ylee@dishs.tp.edu.tw

COURSE DESCRIPTION:

Pre-Calculus serves as a transition between algebra and calculus. This course covers many important fundamental concepts that will prepare students for calculus and college-level mathematics. Students are expected to understand, analyze, and utilize basic functions. They are also expected to understand the relationship between exponential functions and logarithm. Trigonometric functions and identities will be included and students are expected to graph and analyze graph and prove identities. Analytic geometry in two dimension and discrete mathematics will also be covered.

COURSE OBJECTIVES:

The course objectives are defined in the Common Core State Standard high school domain.

CCSS: Mathematics

CCSS: HS: Algebra

Seeing Structure in Expressions

HSA-SSE.A. Interpret the structure of expressions.

HSA-SSE.A.1. Interpret expressions that represent a quantity in terms of its context.

HSA-SSE.A.1b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

HSA-SSE.B. Write expressions in equivalent forms to solve problems.

HSA-SSE.B.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

HSA-SSE.B.3c. Use the properties of exponents to transform expressions for exponential functions.

CCSS: HS: Functions

Interpreting Functions

HSF-IF.B. Interpret functions that arise in applications in terms of the context.

HSF-IF.B.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.

HSF-IF.C. Analyze functions using different representations.

HSF-IF.C.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

HSF-IF.C.7c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.

HSF-IF.C.7d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.

HSF-IF.C.7e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

HSF-IF.C.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

HSF-IF.C.8b. Use the properties of exponents to interpret expressions for exponential functions.

Linear, Quadratic, and Exponential Models

HSF-LE.A. Construct and compare linear and exponential models and solve problems.

HSF-LE.A.1. Distinguish between situations that can be modeled with linear functions and with exponential functions.

HSF-LE.A.1a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

HSF-LE.A.1c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

HSF-LE.A.2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

HSF-LE.A.3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

HSF-LE.A.4. For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a, c, and d are numbers and the base b is 2, 10, or e; evaluate the logarithm using technology.

HSF-LE.B. Interpret expressions for functions in terms of the situation they model.

HSF-LE.B.5. Interpret the parameters in a linear or exponential function in terms of a context.

Trigonometric Functions

HSF-TF.A. Extend the domain of trigonometric functions using the unit circle.

HSF-TF.A.1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.

HSF-TF.A.2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.

HSF-TF.A.3. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for p/3, p/4 and p/6, and use the unit circle to express the values of sine, cosines, and tangent for x, p + x, and 2p - x in terms of their values for x, where x is any real number.

HSF-TF.A.4. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.

HSF-TF.B. Model periodic phenomena with trigonometric functions.

HSF-TF.B.5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.

HSF-TF.B.6. (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.

HSF-TF.B.7. (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.

CCSS: Mathematics

CCSS: HS: Num/Quantity

Vector & Matrix Quantities

HSN-VM.A. Represent and model with vector quantities.

HSN-VM.A.1. (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v||, v).

HSN-VM.A.2. (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

HSN-VM.A.3. (+) Solve problems involving velocity and other quantities that can be represented by vectors.

HSN-VM.B. Perform operations on vectors.

HSN-VM.B.4. (+) Add and subtract vectors.

HSN-VM.B.4a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.

HSN-VM.B.4b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

HSN-VM.B.4c. Understand vector subtraction v - w as v + (-w), where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.

HSN-VM.B.5. (+) Multiply a vector by a scalar.

HSN-VM.B.5a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(v?, v?) = (cv?, cv?).

HSN-VM.C. Perform operations on matrices and use matrices in applications.

HSN-VM.C.6. (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.

HSN-VM.C.7. (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.

HSN-VM.C.8. (+) Add, subtract, and multiply matrices of appropriate dimensions.

HSN-VM.C.9. (+) Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.

HSN-VM.C.10. (+) Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.

CCSS: HS: Functions

Trigonometric Functions

HSF-TF.C. Prove and apply trigonometric identities.

HSF-TF.C.8. Prove the Pythagorean identity $\sin^2(x) + \cos^2(x) = 1$ and use it to calculate trigonometric ratios.

HSF-TF.C.9. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

CCSS: HS: Geometry

Similarity, Right Triangles, & Trigonometry

HSG-SRT.C. Define trigonometric ratios and solve problems involving right triangles

HSG-SRT.C.6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

HSG-SRT.C.7. Explain and use the relationship between the sine and cosine of complementary angles.

HSG-SRT.C.8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

HSG-SRT.D. Apply trigonometry to general triangles

HSG-SRT.D.10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.

HSG-SRT.D.11. (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).

Expressing Geometric Properties with Equations

HSG-GPE.A. Translate between the geometric description and the equation for a conic section

HSG-GPE.A.2. Derive the equation of a parabola given a focus and directrix.

HSG-GPE.A.3. (+) Derive the equations of ellipses and hyperbolas given two foci for the ellipse, and two directrices of a hyperbola.

CCSS: HS: Stats/Probabilities

Using Probability to Make Decisions

HSS-MD.A. Calculate expected values and use them to solve problems

HSS-MD.A.1. (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.

HSS-MD.A.2. (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.

HSS-MD.A.3. (+) Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value.

HSS-MD.A.4. (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.

HSS-MD.B. Use probability to evaluate outcomes of decisions

HSS-MD.B.5a. Find the expected payoff for a game of chance.

HSS-MD.B.5b. Evaluate and compare strategies on the basis of expected values.

Mathematical Practice

MP.The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students.

MP.1. Make sense of problems and persevere in solving them.

MP.2. Reason abstractly and quantitatively.

MP.4. Model with mathematics.

MP.5. Use appropriate tools strategically.

PRIMARY TEXTBOOK & OTHER RESOURCES:

Students are responsible for coming to class prepared with all the required supplies. Laptops or equivalent devices are permitted for some activities based on Teacher's instructions.

- Textbook Ron Larson, Paul Battaglia. PreCalculus with Limits: A Graphing Approach 8th ed. 2020.
- Ti-nspireCX Graphing calculator
- Khan Academy

Ti-*nspire CX* **Calculator I/II** (non-CAS) is a required supply at the Dominican International School-Taipei for the classes:

9-Math (2nd semester) 10-Math 11-Math 12-Math 9-Biology 10-Chemistry/Earth Science 11-Physics

AP Calculus AB AP Calculus BC AP Biology AP Chemistry AP Physics AP Statistics

Do **NOT** buy the Ti-*n*spire CAS model, Ti-84+, Ti-89, Ti-92, or other models!!! Some of the class instructions may be based on understanding how to use the Ti-*n*spire *CX* Calculator. Not having the required calculator could affect the student academic understanding (and grades). Not having the required calculator when the Teacher instructs is equivalent to not being prepared for class, which may count off in the Deportment grade. Tests and Exams may allow only the use of the **Ti-nspire** *CX* calculator.

ASSESSMENT:

Tests and Quarterly Exams are scheduled and announced in advance. Pop Quizzes are unannounced and can be given at any time during the class so the students must come to class prepared. ALL Tests, Exams and Quizzes may be cumulative so students are responsible for staying prepared of the previous scopes and lessons learned.

Homeworks/Classworks/Seatworks are graded based on completion and completing by the due dates. Students are responsible for checking the assignments' due dates posted on Google Classroom. Students are expected to be prepared

to turn-in any work by the due date class time even if the Teacher did not instruct to turn-in t the due date. Any

Missing, Incomplete or Late works are counted with 10% or more penalty with due dates as posted on the Google Classroom. Students MUST submit "Mark as Done" in Google Classroom for each assignments posted. Not submitting "Done" count as Incomplete with 10% penalty. Additional 10% are penalized for each day for late turn-in work. Actual work turn-in may be after the original due date, in which any incomplete work is well late. No late work is accepted 2 days after the due dates posted. Students who are absent are responsible for keeping up with the class by doing the work as assigned on Google Classroom.

Students who miss the scheduled Test or Quarterly Exam must make-up the exam on return at the earliest. If the student does not make-up the exam at the earliest on return, then penalty may be deducted from the final exam score. The make-up test/exam may be different and more challenging than the originally scheduled test/exam. The student grades are assigned as the following:

 Tests and Pop Quizzes Homework/Classwork/Seatwork /Projects Quarterly Exam Deportment 	30% 30% 30% <u>10%</u>
Total Grade	100%

ADDITIONAL INFORMATION:

<u>1st QUARTER – TENTATIVE COURSE CONTENT</u>

(NB: Depending on time and interest, the teacher may delete and/or add other selections.)		
Week / Date	Topic / Projects / Assessments	
Week 1 Aug 10 th to 12 th <u>3 Days of Class</u> 10~ First Day / Orientation Day	1.1 Lines in the Plane	
Week 2 Aug 15 th to 19 th Opening Mass	1.2 Functions1.3 Graphs of Functions1.4 Shifting, Reflecting, and Stretching Graphs	
Week 3 Aug 22 nd to 26 th	1.5 Combinations of Functions1.6 Inverse Functions1.7 Linear Models and Scatter Plots	
Week 4 Aug 29 th to Sep 2 nd	Chapter 1 Test 2.1 Quadratic Functions 2.2 Polynomial Functions of Higher Degree	
Week 5 Sep 5 th to 9 th <u>4 Days of Class</u> 8~ Mass &Birthday Mother Mary 9 th – Moon Festival	2.3 Real Zeros of Polynomial Functions2.4 Complex Numbers	
Week 6 Sep 12 th to 16 th FY1 – Pre-Exam Days	2.5 The Fundamental Theorem of Algebra2.6 Rational Functions and Asymptotes	
Week 7 Sep 19 th to 23 rd	2.7 Graphs of Rational Functions2.8 Quadratic Models	
Week 8 Sep 26 th to 30 th <u>2 Days of Class</u> 28-30 ~Teacher's Conference	4.1 Radian and Degree Measure	
Week 9 Oct 3 rd to 7 th <u>3 Days of Class</u> 6-7 ~Q1 Exams	Quarter Exam	

2nd QUARTER – TENTATIVE COURSE CONTENT

(NB: Depending on time and interest, the teacher may delete and/or add other selections.)		
Week / Date	Topic / Projects / Assessments	
Week 1 (10) Oct 10 th to 14 th <u>4 Days of Class</u> 10 – Double 10 Holiday	4.2 Trigonometric Functions: The Unit Circle	
Week 2 (11) Oct 17 th to 21 st	4.3 Right Triangle Trigonometry4.4 Trigonometric Functions of Any Angle	
Week 3 (12) Oct 24 th to 28 th 25-27 – Book Fair 28- Masquerade Night TBA-Holy Rosary Mass	4.5 Graphs of Sine and Cosine Functions4.6 Graphs of Other Trigonometric Functions	
Week 4 (13) Oct 31 st to Nov 4 th 1-All Saint's Day Mass	4.7 Inverse Trigonometric Functions4.8 Applications and Models	
Week 5 (14) Nov 7 th to 11 th	5.1 Using Fundamental Identities5.2 Verifying Trigonometric Identities	
Week 6 (15) Nov 14 th to 18 th	5.3 Solving Trigonometric Equations5.4 Sum and Difference Formulas	
Week 7 (16) Nov 21 st to 25 th 25 - YSC Contest 25-Gr.12 Q2 Exam	5.5 Multiple-Agle and Product-to-Sum Formulas Chapter 5 Test	
Week 8 (17) Nov 28 th to Dec 2 nd FYI – Pre-Exam Days 28-Gr.12 Q2 Exam	6.1 Law of Sines6.2 Law of Cosines	
Week 9 (18) Dec 5 th to 9 th 8 - Foundation Day Celebrations	6.3 Vector in the Plane6.4 Vectors and Dot Products	
Week 10 (19) Dec 12 th to 16 th <u>3 Days of Class</u> 15-16 ~Q2 Exams	Quarter Exam	
Dec 19 th to Jan 2 nd	Christmas Break	

<u>3rd</u> QUARTER – TENTATIVE COURSE CONTENT

(NB: Depending on time and interest, the teacher may delete and/or add other selections.)		
Week / Date	Topic / Projects / Assessments	
Week 1 (20) Jan 5 to 6 th <u>2 Days of Class</u>	3.1 Exponential Functions and Their Graphs	
Week 2 (21) Jan 9 th to 13 th	3.2 Logarithmic functions and their Graphs3.3 Properties of Logarithms	
Week 3 (22) Jan 16 th to 20 th	3.4 Solving Exponential and Logarithmic Equations3.5 Exponential and Logarithmic Models	
Jan 23 rd to 27 th	Chinese New Year	
Week 4 (23) Jan 30 th to Feb 3 rd	3.6 Nonlinear Models Chapter 3 Test	
Week 5 (24) Feb 6 th to 10 th	7.1 Solving Systems of Equations7.2 Systems of Linear Equations in Two Variables	
Week 6 (25) Feb 13 th to 17 th	7.3 Multivariable Linear Systems7.4 Matrices and Systems of Equations	
Week 7 (26) Feb 20 th to 24 th 20-24 ~IOWA 22 ~ Ash Wednesday Mass 21-23 ~ Pre-Exam Days	7.5 Operations with Matrices7.6 The Inverse of Square Matrix	
Week 8 (27) Feb 27 th to March3 rd <u>3 Days of Class</u> 27-28 ~ 228 Memorial Day Holiday	7.7 The Determinant of a Square Matrix7.8 Applications of Matrices and Determinants	
Week 9 (28) March 6 th to 10 th <u>4 Days of Class</u> <u>11 – Q3 Exams</u>	Quarter Exam	

4th QUARTER – TENTATIVE COURSE CONTENT

(NB: Depending on time and interest, the teacher may delete and/or add other selections.)		
Week / Date	Topic / Projects / Assessments	
Week 1 (29) March 13 th to 17 th <u>4 Days of Class</u> <u>13 - Q3 Exams</u> <u>14~ Q4 Begins</u>	8.1 Sequences and Series8.2 Arithmetic Sequences and Partial Sums	
Week 2 (30) March 20th to 24 th 20 ~ Fire Drill	8.3 Geometric Sequences and Series8.4 The Binomial Theorem	
Week 3 (31) March 27 th to 31 st	8.5 Counting Principles8.6 Probability	
Apr 3 rd to 14 th	Easter Break	
Week 4 (33) Apr 17 th to 21 st	Chapter 8 Test 9.1 Circles and Parabolas	
Week 5 (34) Apr 24 th to 28 th 24-28 ~ AP Mock Exams	9.2 Ellipses9.3 Hyperbola and Rotation of conics	
Week 6 (35) May 1 st to 5 th 2-4~ Pre-Exam 1-5~ Final Exams (K, 5, 8, 12 only) 1-5 ~ AP Exams	9.4 Parametric Equations9.5 Polar Coordinates	
Week 7 (36) May 8 th to 12 th 8-12~ Final Exams(K, 5, 8, 12 only) 1-5 ~ AP Exams	9.6 Graphs of Polar Equations9.7 Polar Equations of Conics	
Week 8 (37) May 15 th to 19 th <u>3 Days of Class</u> 18-19- Q4 Exams	Quarter Exam	
Week 9 (38) May 22 nd to 26 th <u>4 Days of Class</u> 22~ Record Day 23-26 ~ Student Clearance	School Activities	
Week 10 (39) May 29 th to June 2 nd <u>4 Days of Class</u> I ~ Students Last Day 2~ Teachers/Staff Meeting	School Activities	